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A B S T R A C T

Silent speech interfaces (SSIs) have emerged as innovative non-acoustic communication methods, and our pre-
vious study demonstrated the significant potential of three-axis accelerometer-based SSIs to identify silently 
spoken words with high classification accuracy. The developed accelerometer-based SSI with only four accel-
erometers and a small training dataset outperformed a conventional surface electromyography (sEMG)-based 
SSI. In this study, motivated by the promising initial results, we investigated the feasibility of synthesizing spoken 
speech from three-axis accelerometer signals. This exploration aimed to assess the potential of accelerometer- 
based SSIs for practical silent communication applications. Nineteen healthy individuals participated in our 
experiments. Five accelerometers were attached to the face to acquire speech-related facial movements while the 
participants read 270 Korean sentences aloud. For the speech synthesis, we used a convolution-augmented 
Transformer (Conformer)-based deep neural network model to convert the accelerometer signals into a Mel 
spectrogram, from which an audio waveform was synthesized using HiFi-GAN. To evaluate the quality of the 
generated Mel spectrograms, ten-fold cross-validation was performed, and the Mel cepstral distortion (MCD) was 
chosen as the evaluation metric. As a result, an average MCD of 5.03 ± 0.65 was achieved using four optimized 
accelerometers based on our previous study. Furthermore, the quality of generated Mel spectrograms was 
significantly enhanced by adding one more accelerometer attached under the chin, achieving an average MCD of 
4.86 ± 0.65 (p < 0.001, Wilcoxon signed-rank test). Although an objective comparison is difficult, these results 
surpass those obtained using conventional SSIs based on sEMG, electromagnetic articulography, and electro-
palatography with the fewest sensors and a similar or smaller number of sentences to train the model. Our 
proposed approach will contribute to the widespread adoption of accelerometer-based SSIs, leveraging the ad-
vantages of accelerometers like low power consumption, invulnerability to physiological artifacts, and high 
portability.

1. Introduction

Silent speech interfaces (SSIs) are emerging alternative communi-
cation methods that do not depend on vocalized speech, which is the 
most natural and widespread form of communication in human society. 
An SSI enables users to convey their intentions when audible speech is 
limited or unavailable [1]. This technology can be used in a wide range 
of applications across diverse fields. For example, an SSI can assist pa-
tients suffering from speech impairments due to traumatic injuries, 

laryngectomy, and neurodegeneration by restoring their ability to 
interact with external environments and significantly improving their 
quality of life [2]. An SSI can also be employed to communicate in noisy 
environments where verbal communication may be hindered by 
ambient noise [3] and in noise-sensitive environments where quietness 
is necessary [4]. Additionally, the utilization of SSIs could be invaluable 
for security-sensitive tasks, including military operations [5] and the 
maintenance of user privacy in public places [6]. Owing to their 
promising potential as novel modes of communication, SSIs have 
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recently generated considerable interest.
The successful implementation of SSIs, which interpret nonaudible 

speech-related activities and convert them into audible speech and text, 
crucially depends on the utilization of suitable sensing techniques. These 
techniques must effectively capture speech-related information 
embedded in non-acoustic activities. The most representative modalities 
for SSIs include imaging techniques, such as video cameras [7] and ul-
trasound imaging [8]. These techniques can directly measure the 
movement of articulators, such as the lips, jaw, tongue, and vocal tract of 
a body, using high-resolution two- and three-dimensional images, 
allowing the implementation of high-performance SSIs. Magnetic 
articulography-based modalities, including permanent magnet articu-
lography [9] and electromagnetic articulography (EMA) [10], are also 
key sensing methods for SSIs. These modalities track the movements of 
speech articulators by detecting changes in the magnetic field using 
magnetic sensors attached to the articulators. Recently, the use of 
electrophysiological signals such as muscular activity (i.e., surface 
electromyography (sEMG)) [11] and brain activity (i.e., electroen-
cephalography (EEG) and electrocorticography) [12] to implement SSIs 
have been extensively investigated. In addition, studies have investi-
gated the feasibility of various other modalities such as magnetic reso-
nance imaging [13], electro-optical somatography [14], 
electropalatography (EPG) [15], and ultra-wideband impulse radar [16] 
for implementing SSIs.

However, these conventional modalities have practical limitations in 
real-world scenarios because of their bulkiness, stationarity, high cost, 
low signal quality, invasiveness, and lack of portability [15–19]. 
Although sEMG has advantages over other modalities, including light-
weight sensors, affordability, and noninvasiveness, its practical appli-
cation for long-term use is impeded by factors such as bodily fluids and 
muscle fatigue, which can alter the characteristics of sEMG signals [20]. 
To address these limitations, our previous study [21] implemented a 
novel SSI using three-axis accelerometers to measure the physical 
movements of articulators. The results demonstrated that only four ac-
celerometers attached to the facial areas near the mouth could effec-
tively measure speech-related information for classifying 40 words 
spoken silently. The SSI achieved a high classification accuracy of 95.58 
%, surpassing that of a conventional sEMG-based SSI using six sEMG 
electrodes (accuracy = 89.68 %, p < 0.0005). Furthermore, the devel-
oped accelerometer-based SSI achieved similar or higher performance 
than other conventional modalities with a small amount of training data. 
Our initial results demonstrated that accelerometers have excellent po-
tential as new modalities for implementing practical SSIs. As a next step, 
investigating the feasibility of synthesizing spoken speech solely from 
accelerometer signals is necessary. This is because the successful syn-
thesis of spoken speech can demonstrate the potential for synthesizing 
silently spoken (or mimed) speech, which is the ultimate goal of SSIs, i. 
e., empowering users to express their intention rather than merely 
commanding a limited set of words.

Regarding conventional modalities, various studies have demon-
strated the feasibility of synthesizing speech from data recorded while 
people read given sentences aloud. For example, Akbari et al. [22] 
reconstructed speech by recognizing lip movements from facial video 
recordings. They developed a deep neural network-based approach to 
extract speech-related features and generate an auditory spectrogram, 
which was then converted into an audio waveform using NSLtools [23]. 
Kimura et al. [24] developed SottoVoce, which synthesizes audio signals 
from tongue movements recorded using an ultrasound probe placed 
under the jaw. SottoVoce consists of two deep neural networks. The first 
neural network extracts an acoustic feature, i.e., a Mel-scale spectrum, 
from a sequence of ultrasound images, and the second neural network 
enhances the quality of the generated acoustic feature. The sequence of 
the generated Mel-scale spectrum is then converted into voice using a 
Griffin–Lim vocoder [25]. Taguchi and Kaburagi [26] developed a 
bidirectional long short-term memory (bi-LSTM)-based 
articulatory-to-speech conversion method. This method converts the 

movement trajectory of the lip and tongue obtained using EMA sensors 
into speech feature parameters such as Mel cepstral parameters, 
fundamental frequencies, and voiced/unvoiced flags. Speech is pro-
duced using a speech synthesizer called WORLD Morise et al., 2016 
[27]. Janke and Diener [28] introduced a speech synthesis technique for 
sEMG of articulatory muscles. This technique converts features extrac-
ted from sEMG into Mel frequency cepstral coefficients and fundamental 
frequencies and then generates speech sounds using a Mel log spectrum 
approximation vocoder [29].

Based on previous studies, most speech synthesis technologies 
included two main components: 1) an acoustic feature generator that 
transforms source data into acoustic features and 2) a vocoder that 
synthesizes audio waveforms from these acoustic features. Neural vo-
coders have rapidly progressed with the application of deep generative 
models, including the autoregressive model [30], flow-based generative 
model [31], and generative adversarial network (GAN) [32]. Specif-
ically, HiFi-GAN [33], a state-of-the-art GAN-based neural vocoder, 
synthesizes high-fidelity audio waveforms in real-time from a Mel 
spectrogram on a single GPU. In this study, we employed HiFi-GAN as a 
vocoder without further development and mainly focused on designing 
an optimal acoustic feature generator to convert accelerometer signals 
into a Mel spectrogram. For acoustic feature generators, extracting 
appropriate features is crucial for establishing the relationships between 
the source data and the Mel spectrogram. Recent advancements in deep 
learning have demonstrated that deep neural networks have exceptional 
capability for automatic feature extraction [34]. Convolutional neural 
networks (CNNs) exhibit remarkable proficiency in capturing local in-
formation, whereas recurrent neural networks (RNNs), such as LSTM 
and gated recurrent units, can effectively deal with temporal and 
sequential information [35]. In particular, bi-LSTM, an extended version 
of LSTM, can process sequence data more effectively by simultaneously 
considering both past and future information [36]. Recently, Trans-
former [37], a self-attention-based neural network, was proposed to 
address the long-sequence dependency problems inherent in conven-
tional RNNs. Owing to its excellent performance, Transformer has 
become the model of choice for sequential decoding tasks, particularly 
in natural language processing. Furthermore, various Transformer var-
iants have been developed and extended to a wide range of tasks, 
including vision-related tasks [38], genomic sequence analysis [39], and 
SSIs [40].

In this study, we investigated, for the first time, the possibility of 
speech synthesis using accelerometer-based SSIs. Five accelerometers 
were attached to the facial surface to acquire speech-related movements 
while participants spoke sentences aloud. We followed the conventional 
two-step approach involving the acoustic feature generator and vocoder. 
A new acoustic feature generator based on a deep neural network was 
proposed to convert recorded accelerometer signals into a Mel spec-
trogram. The developed deep neural network consists of convolution- 
augmented Transformer (Conformer) blocks [41], leveraging both 
local and global features, along with bi-LSTM to process information 
from both past and future contexts. The recent GAN-based neural 
vocoder, HiFi-GAN, was then employed to synthesize the audio signal 
from the generated Mel-spectrogram. Nineteen healthy individuals 
participated in the experiments and collectively read 270 sentences; the 
quality of the generated Mel spectrograms were evaluated in a 
subject-dependent manner using ten-fold cross-validation, with Mel 
cepstral distortion (MCD), the most commonly used metric in 
biosignal-based speech synthesis studies, as the evaluation metric.

The major contributions of this paper are as follows.

• This paper is the first study to investigate the feasibility of direct 
speech synthesis using three-axis accelerometer signals attached to 
the facial surface.

• We propose a new deep neural network architecture based on 
Conformer to convert accelerometer signals into the Mel 
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spectrograms of recorded sounds, measured simultaneously with the 
accelerometer signals as people spoke sentences aloud.

• The synthesized audio signals are highly intelligible, suggesting that 
three-axis accelerometers have great potential for silent speech 
interfaces.

The remainder of the paper is organized as follows: Section 2 de-
scribes the experimental paradigm, data recording, signals processing, 
and the method for converting three-axis accelerometer signals into 
corresponding Mel spectrograms. Section 3 presents the experimental 
results. Section 4 and Section 5 provide the discussion and conclusion of 
the research, respectively.

2. Methods

2.1. Participants

Nineteen native-Korean individuals (12 males and 7 females, aged 
22.5 ± 2.09 years) participated in the experiments. None of the partic-
ipants reported a serious history of neurological, psychiatric, or other 
severe diseases that could have influenced the experimental results. 
Before the experiments, details of the experiments were provided to all 
the participants, and written informed consent was obtained from each 
participant. The study and its experimental protocol were approved by 
the Institutional Review Board (IRB) of Hanyang University, Republic of 
Korea (IRB No. HYU-2019-11-007-7) according to the Declaration of 
Helsinki.

2.2. Experiment paradigm

In this study, 270 Korean sentences were used considering the overall 
experiment duration, which was limited to approximately 1 h, excluding 
the setup time, to minimize participant fatigue and psychological 
resistance due to the lengthy experiment time. Among them, 180 sen-
tences were composed of words that covered as many Korean phonetic 
combinations as possible, whereas the remaining 90 sentences were 
extracted from the Korean Single Speaker Speech (KSS) dataset [42]. 
There are no identical ones among the 270 sentences, and the sentences 
and their English translations are listed in the Supplementary Material. 
The participants were seated in a comfortable armchair 70 cm away 
from an LCD monitor and completed nine sessions of the experiments, 
each comprising 30 trials of instruction and task periods, with sufficient 
breaks provided between sessions. During the instruction period, the 
participants were encouraged to take short breaks to prevent potential 
muscle fatigue, and the target sentence to be read was displayed on the 
screen to familiarize them. When the participants were ready to proceed, 
they were instructed to close their mouths and press the spacebar on the 
keyboard in front of them. During the task period, a beep sound was 
presented as a trigger for the participants to begin reading the 

designated sentence aloud. To ensure the acquisition of high-quality 
data, the participants were instructed to press the spacebar to com-
plete the trial or to press “x” if they misread or stuttered, allowing them 
to read the sentence again. The timing sequence of a single trial is 
illustrated in Fig. 1. Accelerometer and voice signals from the 270 sen-
tences (30 sentences × 9 sessions) were collected synchronously for each 
participant. The visual instructions and sound stimuli were presented 
using E-prime 3.0 (Psychology Software Tools, Sharpsburg, PA, USA).

2.3. Data recording and signal processing

2.3.1. Audio signals
The audio signals were recorded using a condenser USB microphone 

(VS-100, LAILTONE, South Korea) located under the LCD monitor (70 
cm away from the participants) at a sampling rate of 44,100 Hz. The raw 
audio signals were segmented from 0.5 s relative to the task onset time to 
the end of the reading sentence. Here, data from 0 s to 0.5 s were 
excluded to prevent the beep sound from being recorded in the audio 
signals. The segmented audio signals were downsampled to 22,050 Hz 
and subsequently normalized between − 0.95 and 0.95 for the applica-
tion of HiFi-GAN (https://github.com/jik876/hifi-gan). The back-
ground noise in the normalized audio signals was reduced using the 
Noisereduce library (https://github.com/timsainb/noisereduce), with a 
decreased proportion of 0.95. Log-Mel spectrograms of the preprocessed 
audio signals were obtained using the TorchAudio library [43] with an 
nFFT of 1,024, 80 Mel filter banks, a maximum frequency of 8000 Hz, 
and the center option set false, which are the same parameters used in 
HiFi-GAN. The window and hop lengths were set to 40 and 20 ms, 
respectively, to align with the accelerometer signals, which had a sam-
pling rate of 50 Hz.

2.3.2. Three-axis accelerometers
Five inertial microelectromechanical system chips (MPU-9250, 

Invensense, San Jose, CA, USA) were used to record the three-axis 
accelerometer signals at a sampling rate of 50 Hz. The locations of the 
four sensors were established based on the positions that achieved the 
highest classification accuracy in our previous study [21]. These were 
channel #1 next to the philtrum, channel #2 next to the lip corner, 
channel #3 under the lip and vertically aligned under channel #1, and 
channel #4 at the center of the base of the mandible. Another sensor 
(channel #5) was attached beneath the chin, which is a location 
commonly used in sEMG-based SSI studies [44,45]. The locations of the 
sensors are shown in Fig. 2.

The raw accelerometer signals were segmented into epochs from 0.5 
s relative to the task onset time to the time when the participant pressed 
the spacebar, to align with the audio signals for each trial. The 
segmented accelerometer signals were then normalized using z-score 
normalization along the time axis, as we did in our previous study, to 
increase the training speed and enhance performance[21,46–48]. No 

Fig. 1. Timing sequence of a single trial. The text inside the parentheses is the English translation of the corresponding Korean text presented to the participants.
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additional preprocessing and calibration were applied to the normalized 
accelerometer signals.

2.4. Accelerometer-to-Speech

2.4.1. Acoustic feature generator for accelerometer signals
In this study, we developed a Conformer-based acoustic feature 

generator to convert accelerometer signals into Mel spectrograms. 
Conformer [41] has an advanced Transformer architecture that com-
bines Transformer and CNN models. Accordingly, it compensates for the 
limited fine-grained local feature extraction and high computational 
cost of the Transformer as well as the limited capability of a CNN to 
capture global contexts. Combining the Transformer and CNN models 
enables the Conformer model to capture both local and global de-
pendencies in sequence data while maintaining computational effi-
ciency. This has made the Conformer model a de facto model for various 
speech-processing tasks such as automatic speech recognition [49,50].

The developed acoustic feature generator comprises a linear layer, 
four sequential Conformer blocks, and two bi-LSTM layers, followed by a 
linear layer, as shown in Fig. 3. The first linear layer, consisting of 2048 
hidden units, processes the accelerometer signals, whose dimensions are 
number of time samples × number of channels (i.e., 3 axes × 5 channels 
= 15), resulting in an output with dimensions of number of time sam-
ples × 2048. Note that using a consistent number of time samples is 
necessary; however, the data lengths of the different sentences were 
different in our case. To address this issue, we set the number of time 
samples to 128 to train the model and employed a random starting point 
for each sentence in every epoch to ensure that the entire sentence could 
be utilized in the training process. In the acoustic feature generator, all 
the Conformer blocks have an identical architecture consisting of four 
sequentially stacked modules comprising two feedforward modules with 
multi-head self-attention and convolution modules in between, followed 
by layer normalization. The detailed architecture of each module is 
shown in Fig. 4. The hyperparameters of the encoder dimension, number 
of attention heads, convolution kernel size, and expansion factor of the 
feedforward modules were set to 2,048, 32, 31, and 3, respectively. 
Other hyperparameters were set to the same values as those used in the 
default Conformer model [41]. The two bi-LSTM layers also had the 
same parameter configurations of 2048 hidden units per direction, and 
the last linear layer comprised 80 hidden units, resulting in an output 
dimension of the number of time samples × 80 (the number of Mel filter 
banks).

The acoustic feature generator was trained to minimize the mean 
squared error between the log-Mel spectrograms derived from the pre-
processed audio signals and those generated using the acoustic feature 
generator for 1000 epochs with a batch size of four. The AdamW [51] 
optimizer was employed with cosine annealing and a warmup restart 
scheduler [52]. The initial and maximum learning rates were set to 
0.00001 and 0.0001, respectively. The cycle and warm-up steps were 

Fig. 2. Locations of three-axis accelerometers.

Fig. 3. Architecture of developed acoustic feature generator. Dimensions listed 
under each network represent input dimensions for each layer, block, 
and module.

Fig. 4. Architecture of each module comprising Conformer blocks. Dimensions 
listed under each layer represent input dimensions.
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500 and 100, respectively, and the rate of decrease in the maximum 
learning rate per cycle was 0.9. All the hyperparameters were empiri-
cally determined using data from the first two folds of Participant #1. All 
implementation and training processes were performed using PyTorch 
[53], and an NVIDIA RTX 2080Ti GPU was used to accelerate the 
training process. The overall flowchart of the developed system is shown 
in Fig. 5.

2.5. Performance evaluation

The performance of the developed SSI system was evaluated in a 
subject-dependent manner, meaning that an individual model was 
created for each participant. A ten-fold cross-validation strategy was 
employed, where the dataset was divided into ten sub-datasets, each 
comprising 27 sentences. Nine of these sub-datasets were used to train 
the model, while the remaining subset was used to evaluate the quality 
of the generated Mel spectrogram. This procedure was repeated ten 
times to assess the quality of all the synthesized sentences, with each 
model trained exclusively on data from the corresponding participant. 
Here, it is noteworthy that none of the 270 sentences used in this study 
were identical, indicating that all the sentences in the test set of each 
fold were entirely not included in the training dataset. The MCD, 
calculated using the “melcd” function in the nnmnkwii library (htt 
ps://github.com/r9y9/nnmnkwii), was used as the evaluation metric.

3. Results

3.1. Mel spectrogram generated using three-axis accelerometer signals

The ground truth and generated Mel spectrograms from Participants 
#4, #9, and #15 are shown in Fig. 6. Here, the “Ground Truth” refers to 
the Mel spectrograms derived from the preprocessed audio signals and 
“Generated” denotes those converted from the three-axis accelerometer 
signals using the developed acoustic feature generator. Note that all the 
Mel spectrograms generated from the three-axis accelerometer signals 
were selected from the test set of the ten-fold cross-validation. The 
exemplar sentences shown in Fig. 6 are randomly selected from each 
participant. As shown in the figure, the generated Mel spectrograms 
closely match the original Mel spectrograms. MCDs were evaluated for 
all the sentences to assess the quality of the generated Mel spectrograms 
and then averaged across the 270 sentences for each participant. The 

mean MCDs with standard deviations for each participant are listed in 
Table 1. The grand average MCD for all the participants is 4.86 ± 0.65, 
which is denoted as “Mean” in the table.

3.2. Speech synthesis using generated mel spectrograms

In this study, HiFi-GAN, a GAN-based neural vocoder, was employed 
to convert the Mel spectrograms generated from the accelerometer sig-
nals into audio signals. The authors of HiFi-GAN provide a pre-trained 
model, trained with the LJSpeech dataset (https://keithito.com 
/LJ-Speech-Dataset/), that enables high-speed speech generation; 
however, Mel spectrogram parameters used in the pre-trained model 
differ from those in our study. Therefore, in this study, we modified the 
hyperparameters of HiFi-GAN V1. The original window size of 1024 and 
hop size of 256 were changed to 882 (40 ms) and 441 (20 ms), respec-
tively. The nFFT and segment size, initially set to 1024 and 8,192, were 
adjusted to 882 and 14,112, respectively. Furthermore, the upsampling 
rates and kernel sizes were changed from [8, 8, 2, 2] to [7, 7, 3, 3] and 
from [16, 16, 4, 4] to [13, 13, 5, 5], respectively. The modified HiFi-GAN 
was trained using the same LJSpeech dataset as the pre-trained model 
for 1000 epochs. Examples of the synthesized audio signals are available 
at https://jkwon0331.github.io/Acc2Speech/.

3.3. Effect of additional channel

In this study, channel #5 was newly employed, in addition to the 
four channels that showed the highest classification accuracy in our 
previous SSI study. To further investigate the effect of adding channel 
#5, the MCDs were evaluated using both four- and five-channel con-
figurations. In Fig. 7, the white and gray bars represent the averaged 
MCDs for the four- and five-channel configurations, respectively. The 
error bars indicate the standard deviation. The grand averaged MCDs for 
the four- and five-channel configurations over all the participants are 
5.03 ± 0.65 and 4.86 ± 0.65, respectively, denoted by “Mean” in the 
figure. Here, a lower MCD implies better speech synthesis performance. 
Because the Kolmogorov–Smirnov test indicated that the normality 
criterion was not satisfied, the Wilcoxon signed-rank test was performed 
for statistical analyses. The results showed a significant statistical dif-
ference between the averaged MCDs for the four- and five-channel 
configurations (p < 0.001), indicating that the addition of the fifth 
channel improved the quality of speech synthesis.

Fig. 5. A detailed Schematic of the pipeline for the proposed system. Both the target Mel spectrogram and preprocessed accelerometer signals share an identical 
random starting point. After the training phase, only the pipeline indicated by the black line is utilized for validation.
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3.4. Comparison with conventional modalities

We compared the averaged MCD of our developed system with those 

obtained in previous speech synthesis studies that utilized other types of 
signals, including sEMG, EMA, and EPG, which are the most represen-
tative modalities for SSI because of their portability with small sensors 

Fig. 6. Exemplar Mel spectrograms for three participants. “Ground Truth” denotes Mel spectrograms derived from preprocessed audio signals and “Generated” 
indicates those generated from three-axis accelerometer signals. Color bars indicate decibel scale.

Table 1 
Averaged MCDs and standard deviation (std) over 270 sentences.

Participant 1 2 3 4 5 6 7 8 9 10

Average 4.32 5.65 5.42 5.05 5.88 3.18 4.52 5.41 4.43 4.26
std 0.70 0.78 0.60 0.79 0.80 0.51 0.72 0.82 0.61 0.63

Participant 11 12 13 14 15 16 17 18 19 Mean

Average 4.34 5.15 5.58 4.96 5.52 4.58 4.71 4.63 4.81 4.86
std 0.71 0.76 0.80 0.66 0.84 0.97 0.80 0.62 0.91 0.65

Fig. 7. Averaged Mel cepstral distortion (MCD), evaluated over all 270 sentences for both four- and five-channel configurations, represented as white and gray bars, 
respectively. Grand averaged MCDs for both configurations over all participants are 5.03 ± 0.65 and 4.86 ± 0.65, respectively, denoted by “Mean.” Error bars 
indicate standard deviations. Here, *** represents p < 0.001 (Wilcoxon signed-rank test).
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and wearables. Table 2 presents the results of the comparison. Notably, 
the developed method achieves the lowest averaged MCD even with the 
fewest sensors and similar or smaller amounts of training data. Addi-
tionally, our study involves the largest group of participants, demon-
strating the generalizability of our results. Although this cannot be 
considered an objective evaluation, the results demonstrate that three- 
axis accelerometers are sufficiently effective in capturing speech- 
related information, enabling the generation of a Mel spectrogram 
that closely resembles the original Mel spectrogram. The result suggests 
that three-axis accelerometer-based SSIs have considerable potential for 
practical applications.

4. Discussion

In this study, we investigated the feasibility of synthesizing spoken 
speech using three-axis accelerometer signals for the first time. Five 
accelerometers were attached to the face of each participant to capture 
speech-related information while they read 270 Korean sentences aloud. 
A Conformer-based deep neural network was proposed as an acoustic 
feature generator to decode the accelerometer signals and reconstruct 
the corresponding Mel spectrogram, which was then converted to the 
audio signal using HiFi-GAN neural vocoder. The quality of the gener-
ated Mel spectrograms were evaluated using the MCD metric, employing 
a ten-fold cross-validation strategy. All 270 Korean sentences were 
tested using the proposed model whose training data did not include the 
test data of each fold. As a result, a grand average MCD of 4.86 ± 0.65 
was achieved, and synthesized audio waveforms using a modified HiFi- 
GAN can be accessed from our website (https://jkwon0331.github. 
io/Acc2Speech/). The generated speech was sufficiently intelligible for 
any native Korean speaker to identify the meaning of the spoken sen-
tences. Interestingly, the synthesized speech closely resembled the 
ground-truth speech even though HiFi-GAN was trained on an English 
sentence dataset. Moreover, the current study identified an additional 
beneficial location for three-axis accelerometer-based SSIs, which can 
significantly improve the quality of the generated Mel spectrograms. To 
the best of our knowledge, this is the first demonstration of synthesizing 
intelligible speech using three-axis accelerometer signals. Our study 
represents a necessary and significant step forward in the implementa-
tion of accelerometer-based SSIs for practical applications.

Although our study showed promising results, some limitations 
should be addressed in future studies. First, a major limitation is that 
accelerometer signals cannot capture tongue movements, which 
adversely affects the quality of both generated Mel spectrograms and 
synthesized speeches. This issue is particularly critical because many 
words involve similar or identical movements of the mouth, to which the 
accelerometers were attached in this study. Therefore, accurately 
capturing tongue movements is essential for realizing an accurate and 
reliable communication system. We expect that the use of large language 
models such as Chat-GPT can enhance the performance of 
accelerometer-based SSIs after transferring the synthesized speech to 
text. In addition, the concurrent use of other biosignals, such as sEMG, 
can be considered to enhance the performance of speech synthesis to 
measure tongue-related information during speech. Second, the channel 
configuration used in this study has not yet been optimized. Given that 
accelerometer-based speech research is a relatively new field, no studies 
have specifically focused on determining the optimal channel configu-
ration. In this study, we employed an additional accelerometer attached 

under the chin with the four-channel configuration suggested in our 
previous study, and this additional accelerometer significantly contrib-
uted to improving the quality of the generated Mel spectrogram. In 
addition, we believe that there are still considerable areas to explore, 
including the neck, which may provide additional information on vocal 
cord movements. Therefore, we plan to investigate optimized channel 
configurations for accelerometer-based SSIs, potentially by employing 
high-density sensors as utilized in previous sEMG-based SSI studies [57,
58].

Thanks to recent advancements in deep learning, the quality of 
generated Mel spectrograms can be enhanced. First, feature extraction 
and selection methods can be employed. In the current study, we used 
only the normalized accelerometer signals without additional feature 
extraction. However, recent studies have demonstrated that exploiting 
appropriate features can significantly improve the performance of deep 
learning models [59,60]. Therefore, it is necessary to explore feature 
extraction and selection methods for accelerometer-based speech in-
terfaces in future studies. Furthermore, the latest hybrid deep learning 
architecture can be employed by combining the proposed network with 
a parallel inception concept to deal with multiple features [59] or cosine 
similarity [61]. Second, applying the GAN [62] architecture can notably 
improve the generative results. GAN consists of two competing net-
works: a discriminator, to discern whether the input is real or generated, 
and a generator, to create realistic data to deceive the discriminator. The 
fundamental concept of GANs is that competitive interaction between 
the generator and discriminator can produce high-quality realistic data. 
If a large dataset consisting of original and synthesized Mel spectro-
grams acquired from multiple subjects could be collected in future 
studies, the overall performance of accelerometer-based SSIs might be 
greatly improved by training GAN models using both spectrograms. This 
is an interesting topic that should be pursued in future studies. Addi-
tionally, the performance of deep neural networks is significantly 
influenced by the amount of training data, with larger datasets typically 
leading to higher performance [47,63]. In this context, the utilization of 
recent deep learning-based data augmentation techniques [64,65] can 
effectively increase the training dataset without needing additional 
training sessions and can serve as a potential approach to enhance the 
quality of generated Mel spectrograms. Similarly, subject-based transfer 
learning with fine-tuning [59,66,67] is considered a promising method 
for improving the performance of deep neural networks by leveraging 
data from different participants. Therefore, investigating appropriate 
data augmentation and transfer learning methods for 
accelerometer-based SSIs could be valuable for future research. Ulti-
mately, our final goal is to implement subject-independent SSIs without 
individual training data from new users to achieve the practical use of 
SSIs as novel communication modes. Since our results applied to cases 
where the training and evaluation data came from the same participants, 
the method may not perform well or generalize effectively on 
completely new users. Therefore, it is necessary to pursue further studies 
to utilize the proposed accelerometer-based SSIs in a 
subject-independent manner. This issue seems to be challenging because 
training the deep learning model with data from 18 participants to test a 
single participant’s data takes about a month under our computational 
environment. This implies that the subject-independent SSIs cannot be 
implemented on portable devices such as tablets or smartphones. 
Therefore, further studies needs to be conducted to develop a new deep 
learning model appropriate for implementing subject-independent SSIs, 

Table 2 
Comparison with previous studies.

Authors # Participants Modality (# Sensors) Dataset Training Data Average MCD

Diener et al. [54] 8 speakers sEMG (40 Sensors) 290 Utterances 250 Utterances 7.68
Chen et al. [55] 3 speakers EMA (9 Sensors) 354 Utterances 304 Utterances 7.176
Chen et al. [56] 1 speaker EPG (124 Sensors) 320 Utterances 222 Utterances 5.173
Ours 19 speakers Accelerometer (5 Sensors) 270 Utterances 243 Utterances 4.86
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which reduces the computational burden while maintaining the overall 
performance.

Building on the findings of this study, our next research will focus on 
investigating the feasibility of reconstructing silent speech using accel-
erometer signals, which would be more challenging owing to the 
absence of audio signals. We believe that this challenge can be addressed 
by employing a length regulator-based approach that utilizes both 
spoken and silent speech datasets, as demonstrated in a previous EMG- 
based SSI study [45]. Another major research topic is the implementa-
tion of wireless and wearable accelerometer-based SSIs for practical 
applications. To this end, we can utilize tattoo-like flexible sensors [68] 
that have been successfully applied in various fields to reduce potential 
discomfort in real-world scenarios. This advancement can significantly 
enhance the practicality of accelerometer-based SSIs. Furthermore, 
considering stretchable sensors, it is worthwhile to investigate the 
feasibility of hybrid SSIs that integrate our developed accelerometers 
with sEMG sensors to improve the performance of SSIs. Several 
stretchable sEMG sensors have already been introduced [69,70], which 
can be readily combined with three-axis accelerometers. Since both 
sensors measure different underlying signals, their combination can 
exploit the complementary characteristics of the two modalities, 
potentially leading to a substantial improvement in the overall SSI 
performance.

5. Conclusion

In this study, we demonstrated for the first time the feasibility of 
spoken speech synthesis from three-axis accelerometer signals. We 
employed five accelerometers attached to the face to capture speech- 
related information and proposed a new Conformer-based acoustic 
feature generator to convert the recorded signals into a Mel spectro-
gram. The grand average MCD of the developed method was 4.86 ± 0.65 
across 19 participants, significantly surpassing the performances of 
conventional modalities such as EMA, EPG, and sEMG. Moreover, the 
developed approach does not require any prior knowledge-based pre-
processing of accelerometer signals: it can be easily realized with simple 
z-score normalization. The reconstructed Mel spectrograms were then 
fed to a HiFi-GAN neural vocoder to synthesize the audio waveforms. 
Interestingly, the synthesized audio samples were similar to the original 
voices and intelligible enough, even though the neural vocoder was 
trained using sentences in different languages. Our findings can be 
considered a significant milestone in demonstrating the high potential of 
accelerometer-based SSIs.
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